Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction Falls are the leading cause of injury in older people. Reducing falls could reduce financial pressures on health services. We carried out this research to develop a falls risk model, using routine primary care and hospital data to identify those at risk of falls, and apply a cost analysis to enable commissioners of health services to identify those in whom savings can be made through referral to a falls prevention service. Methods Multilevel logistical regression was performed on routinely collected general practice and hospital data from 74751 over 65's, to produce a risk model for falls. Validation measures were carried out. A cost-analysis was performed to identify at which level of risk it would be cost-effective to refer patients to a falls prevention service. 95% confidence intervals were calculated using a Monte Carlo Model (MCM), allowing us to adjust for uncertainty in the estimates of these variables. Results A risk model for falls was produced with an area under the curve of the receiver operating characteristics curve of 0.87. The risk cut-off with the highest combination of sensitivity and specificity was at p = 0.07 (sensitivity of 81% and specificity of 78%). The risk cut-off at which savings outweigh costs was p = 0.27 and the risk cut-off with the maximum savings was p = 0.53, which would result in referral of 1.8% and 0.45% of the over 65's population respectively. Above a risk cut-off of p = 0.27, costs do not exceed savings. Conclusions This model is the best performing falls predictive tool developed to date; it has been developed on a large UK city population; can be readily run from routine data; and can be implemented in a way that optimises the use of health service resources. Commissioners of health services should use this model to flag and refer patients at risk to their falls service and save resources.

Original publication

DOI

10.1371/journal.pone.0159365

Type

Journal article

Journal

PLoS ONE

Publication Date

01/07/2016

Volume

11